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A pressure-based algorithm is presented for turbulent cavitating flow computa-
tions. Single-fluid Navier–Stokes equations cast in their conservative form, along
with a volume fraction transport equation, are employed. The flow field is com-
puted in both phases with the vapor pressure recovered inside the cavity via a mass
transfer model. A pressure–velocity–density coupling scheme is developed to handle
the large density ratio associated with cavitation. While no temperature, and hence
Mach number, effect is considered in the cavitation model, the resulting pressure–
correction equation shares common features with that of high-speed flows, exhibiting
a convective–diffusive type, instead of only a diffusive type. Furthermore, similar
to high-speed cases, upwinded density interpolation in mass flux computations also
aids convergence of the cavitating flow computations. The nonequilibrium effect
in the context of the k-ε turbulence model, the grid distribution, and the choice of
convection schemes have been computationally examined in projectile flows. While
satisfactory predictions in wall pressure distribution can be made with variations in
grid resolution and parameters in the cavitation model, other aspects, such as the den-
sity distribution and detailed streamline characteristics, are found to exhibit higher
sensitivity to them. c© 2002 Elsevier Science (USA)

NOMENCLATURE

Symbols

b local characteristic speed
C arbitrary constant
Cε1, Cε2, Cµ turbulence model constants
Cdest empirical constant in the evaporation term
CP pressure coefficient
Cprod empirical constant in the condensation term
f flux at a cell face
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F flow rate at a cell face
k turbulent kinetic energy
ṁ− evaporation rate
ṁ+ condensation rate
�n unit normal vector at a cell face
�u velocity vector
u′

i fluctuating velocity components in Cartesian coordinates
P pressure, turbulence production in Eqs. (6)–(7).
P ′ pressure correction
q source term per unit volume
Q dissipation function
S surface area of the cell face
U∞ u-velocity at a reference point
V volume of the cell
t , t∞ time, mean flow time scale
α volume fraction
δ numerical viscosity parameter
δij Kronecker delta function
ε turbulent dissipation rate
φ generalized dependent variable
� diffusion coefficient
µ laminar viscosity
µt turbulent viscosity
ψ(r) Minmod flux limiter
τ, τij Reynolds stress tensor
νt kinematic viscosity
ρm mixture density
ρ ′ density correction
σ cavitation parameter
σk, σε turbulence model constants

Subscripts and Superscripts

cf cell face
conv convection
diff diffusion
i grid index location in Eqs. (11), (13)–(16), (25), (26)
l liquid phase
n iteration level in Eqs. (9)–(12)
p cell center location
v vapor phase
∞ freestream
∗ predicted value

1. INTRODUCTION

In liquid flows, cavitation generally occurs if the pressure drops below the vapor pressure
and consequently the negative pressures are relieved by means of forming gas-filled or
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gas- and vapor-filled cavities [1]. Cavitation can be observed in a wide variety of hydro-
dynamic systems, such as pumps, nozzles, injectors, marine propellers, hydrofoils, and
underwater bodies [2]. Cavitating flows in most engineering systems are turbulent, and the
dynamics of the interface formed involves complex interactions between vapor and liq-
uid phases. These interactions are not well understood in the closure region of the cavity
where a distinct interface may not exist and the flow is unsteady. Undesirable features of
cavitation are structural damage, noise, and power loss. On the other hand, drag reduction
can be observed on bodies surrounded fully or partially with a natural or gas-ventilated
cavity [3].

Computational modeling of cavitation has been pursued for years. Early studies primarily
utilize the potential flow theory; they are still widely used in many engineering applications.
Studies dealing with cavitation modeling through the computation of the Navier–Stokes
(N–S) equations have emerged in the last decade. These studies can be put into two cate-
gories, namely, interface tracking methods and homogeneous equilibrium flow models.

In the first category, the cavity region is assumed to have a constant pressure equal to
the vapor pressure of the corresponding liquid, and the computations are done only for
the liquid phase. Constant pressure assumption is physically sensible and has been verified
experimentally [4, 5]. Computationally, the liquid–vapor interface can be tracked based
on this assumption, along with a wake model to handle the shape of the cavity. Grid is
often regenerated iteratively to conform to the cavity shape. These models are capable of
simulating sheet cavitation but may not be adequate for cases in which bubble growth and
detachment exists. In addition, so far, they are limited to 2-D planar or axisymmetric flows
because of the difficulties involved in tracking 3-D interfaces. Examples can be found in
Chen and Heister [6] and Deshpande et al. [7].

The second category can be termed the homogeneous equilibrium flow models in which
the single-fluid modeling approach is employed for both phases. Differences between the
various models in this category mostly come from the relation that defines the variable
density field. Delannoy and Kueny [8] utilize an arbitrary barotropic equation of state to
compute the density field. Likewise, Chen and Heister [9] derive a time- and pressure-
dependent differential equation for density. Ventikos and Tzabiras [10] introduce the water-
vapor state laws to model the cavitation dynamics, and consider the whole domain, including
both vapor and liquid phases, as a compressible fluid. A pressure-based algorithm is adopted,
where the density correction in vapor phase is linked to the mass residual there. The results
obtained do not seem to recover the cavity vapor pressure in accordance with the cavitation
number. Edwards et al. [11] use the Sanchez–Lacombe equation of state and solve the
temperature transport equation in addition to the Navier–Stokes equations. Considering
the isothermal character of cavitating flows in many applications, utilizing a temperature
or enthalpy equation and assuming the whole flowfield as compressible may not be the
most effective approach. Kubota et al. [12] couple the Rayleigh–Plesset equation [13, 14]
to the flow solver and compute the void fraction based on the bubble radius. Then the
density is calculated using the void fraction formalism. Due to the time-dependent nature
of the Rayleigh–Plesset equation, the model is restricted to unsteady cloud cavitation. The
authors have also reported that this method is prone to instability because of high-pressure–
density dependence, and could not reach the convergence levels of noncavitating flow
simulations.

To account for the cavitation dynamics in a more flexible manner, a transport equation
model has been recently developed. In this approach, volume or mass fraction of liquid (and
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vapor) phase is convected. Singhal et al. [15], Merkle et al. [16], and Kunz et al. [17, 18] have
employed similar models based on this concept with differences in the source terms. One
apparent advantage of this model comes from the convective character of the equation, which
allows modeling of the impact of inertial forces on cavities such as elongation, detachment,
and drift of bubbles. Singhal et al. [15] utilize a pressure-based algorithm but offer no
detailed information related to computational convergence and stability. Merkle et al. [16]
and Kunz et al. [17, 18] have employed the artificial compressibility method with special
attention given to the preconditioning formulation. Ahuja et al. [19] have developed an
algorithm to account for the compressibility effects in the context of artificial compressibility
methods with adaptive unstructured grids. Venkateswaran et al. [20] have compared the
above-mentioned studies, and concluded that all three preconditioning formulations are
essentially the same with minor differences.

So far, in the open literature, there seems to be a lack of detailed account of extending
pressure-based methods for computing cavitating flows. By pressure-based method, we
mean that the pressure field is solved by combining the momentum and mass continuity
equations to form a pressure or pressure–correction equation [21–23]. In the present study,
a pressure-based algorithm, with conservative formulation, multiblock, and curvilinear grid
systems, is adopted to compute cavitating flows. In particular, the coupling between velocity,
pressure, and density for proper formulation of the pressure–correction equation for cavitat-
ing flow conditions will be discussed. The mass transport equation cavitation model, such as
that employed by Kunz et al. [17, 18], will be adopted. Although the model considered does
not explicitly account for the temperature effect (and hence Mach number effect), it will be
demonstrated that the density variations, which are caused by cavitation modeling in the
present algorithm, share similar features to that of high-speed flows. This aspect is distinctly
different from, say, a low-speed chemically reacting flow [24], where the density variation,
while substantial, does not impact the characteristics of the pressure–correction equation.
In the low Mach number chemical reacting flows, the pressure–correction equation is of
a diffusive type, while in the present cavitating flow model, it is of a convective–diffusive
type.

During our literature review, we noticed that criteria to assess computational studies
dealing with cavitation, through employment of N–S equations, have not been established
yet. Based on our experience, we suggest that a robust computational method must at least
satisfy the following conditions:

• The normalized pressure inside the cavity should be equal, or be very close, to the
negative value of corresponding cavitation number.

• Density profiles should be plotted to demonstrate that the method handles density
ratios on the order of 100–1000 with good convergence levels.

• There should be no spikes or overshoots in pressure profiles from large density jumps
across the interface.

In what follows, we first present the governing equations and stable main features of the
cavitation model, and then propose numerical schemes that ensure numerical computations.
The results to be presented include simulations of both noncavitating and cavitating flows
around axisymmetric cylindrical geometries. Also, we investigate the robustness of the nu-
merical framework and the cavitation model through studies of grid refinement, convection
schemes, and turbulence modeling.



TURBULENT CAVITATING FLOW COMPUTATIONS 367

2. GOVERNING EQUATIONS

The set of governing equations consists of the conservative form of the Reynolds av-
eraged Navier–Stokes equations, plus a volume fraction transport equation to account for
the cavitation dynamics. The equations, written in the Cartesian coordinates for the ease of
presentation, are presented as follows:

∂ρm

∂t
+ ∇ · (ρm �u) = 0 (1)

∂

∂t
(ρm �u) + ∇ · (ρm �u�u) = −∇ P + ∇ · [(µ + µt )∇�u] + 1

3
∇[(µ + µt )∇ · �u] (2)

∂αl

∂t
+ ∇ · (αl �u) = (ṁ− + ṁ+). (3)

The mixture density and the turbulent viscosity are defined, respectively, as follows:

ρm = ρlαl + ρv(1 − αl) µt = ρmCµk2

ε
. (4)

2.1. Cavitation Modeling

Physically, the cavitation process is governed by the thermodynamics and the kinetics of
the phase change dynamics occurring in the system. This complex phenomenon is modeled
through ṁ− and ṁ+ terms in Eq. (3), which represent evaporation and condensation of the
phases, respectively, and results in a variable density field. Surface tension and buoyancy
effects are neglected considering the typical situation that Weber and Froude numbers are
large. The particular form of these phase transformation rates are adopted from Kunz et al.
[17, 18]. The values of the empirical constants Cdest and Cprod for each simulation are
presented along with corresponding figures and are different than the values reported in
other studies using the same cavitation model. The sensitivity of the simulations to these
constants is also studied. The source terms adopted in this study are given below:

ṁ− = CdestρvαlMIN [0, p − pv]

ρl
(

1
2ρlU 2∞

)
t∞

ṁ+ = Cprodρvα
2
l (1 − αl)

ρl t∞
. (5)

The time scale in the equation is defined as the ratio of the characteristic length scale to
the reference velocity scale (l/U ). The nominal density ratio (ρl/ρv) is the ratio between
thermodynamic values of density of liquid and vapor phases at the corresponding flow
condition; a value of 1000 is taken for this ratio in all computations in this study.

2.2. Turbulence Modeling

For the turbulence closure, the original k-ε turbulence model with wall functions is
adopted [25]:

∂ρmk

∂t
+ ∇ · (ρmk �u) = (τ · ∇k) · �u − ρmε + ∇ ·

((
µ + µt

σk

)
∇k

)
(6)

∂ρmε

∂t
+ ∇ · (ρmε�u) = Cε1

ε

k
P − Cε2ρm

ε2

k
+ ∇ ·

((
µ + µt

σε

)
∇ε

)
. (7)
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TABLE I

Empirical Constants Used in k-ε Turbulence Model

MODEL Cµ Cε1 Cε2 σk σε

Original k-ε 0.09 1.44 1.92 1.0 1.3
Nonequilibrium k-ε 0.09 1.15 + 0.25(P/ε) 1.45 + 0.45(P/ε) 0.8927 1.15

The turbulent production, Reynolds stress tensor term, and the Boussinesq eddy viscosity
concept are defined as follows:

P = (τ · ∇k) · �u τ = τi j = −ρu′
i u

′
j u′

i u
′
j = 2

3
kδi j − νt

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (8)

In the above equations Cε1, Cε2, σk , σε are empirical constants. For certain types of flows,
such as flows with recirculation, rotation and large streamline curvatures, equilibrium be-
tween the turbulent production and dissipation is not maintained, these constants should be
modified because they are originally determined based on the equilibrium conditions. The
coefficients Cε1, Cε2 regulate the production and dissipation in the ε equation, respectively.
Among the variants introduced to modify the empirical constants, we investigate the so-
called nonequilibrium k-ε in this study. The empirical constants used in these models are
tabulated in Table I. Further information about these models and applications for different
test cases is given in Shyy et al. [26].

3. NUMERICAL METHODOLOGY

The present Navier–Stokes solver, documented in [23, 26, 27], employs a pressure-based
algorithm and a finite volume approach to solve the fluid flow and energy equations, on
collocated multiblock grids in 2-D and 3-D domains. For the present cavitation model,
Eq. (3), the volume fraction transport equation with appropriate source terms given in
Eq. (5), needs to be implemented into the solver. To help describe the underlying algorithm
we adopt the steady-state generic transport equation in vector form as

∇ · (ρ �uφ) = ∇ · (�∇φ) + qφ, (9)

where φ is the generalized dependent variable, � is the diffusion coefficient, and the second
term on the right-hand side represents the source term for the transported quantity φ. The
above equation is transformed to an integral form, suitable for finite volume discretization,
using the divergence theorem,

∮
s

(ρ �uφ − �∇φ) · �n d S =
∫
v

qφ dV, (10)

which upon integration yields the equation

Fi+ 1
2 , j + Fi− 1

2 , j + Fi, j+ 1
2
+ Fi, j− 1

2
= bi , (11)
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where bi is the integrated form of the source term, and F represents the flux of φ at each
control volume face and is composed of a convective and a diffusive part as follows:

Fcf = Fconv
cf + Fdiff

cf = (ρ �uφ − �∇φ) · �nScf. (12)

The diffusive flux is discretized using the second-order central difference scheme, whereas
the choice of discretization scheme for the convective flux often depends on the flow condi-
tions and fluid physics [23]. In this study we consider two schemes, namely, the first-order
upwind (FOU) and the second-order controlled variation scheme (CVS) [28, 29]. The first-
order upwind scheme is employed mainly to probe the sensitivity of the solution with
respect to the choice of the convection operators. The CVS scheme is employed in all cases
for experimental validation. Both convection schemes are illustrated considering the one-
dimensional transport equation of the variable φ. In the first-order upwind (FOU) scheme,
the value of the dependent variable is estimated using the upwind neighbor value. If we
let fi+1/2 be the first-order flux at a control volume face, determined through first-order
extrapolations of two immediate neighboring cells, then the scheme can simply be written
as

fi+ 1
2

= φn+1
i Max

(
ρi+ 1

2
un

i+ 1
2
, 0

)
− φn+1

i+1 Max
(
−ρi+ 1

2
un

i+ 1
2
, 0

)
, (13)

where u is the velocity component in the corresponding direction.
Higher-order spatial accuracy can be obtained by employing more grid points for ex-

trapolation. However, it is known that second-order-accurate schemes for convection terms
produce oscillations around discontinuities. Later, in the results section, it will be shown
that shock-like discontinuities in density profiles do appear in cavitating flows. If a linear
second-order upwind scheme is used, oscillations in the vicinity of discontinuities can in-
terfere with the mass transfer model and can lead to unrealistic solution or even divergence.
For this reason, the numerical methodology must introduce a convection scheme that does
not generate nonphysical oscillations in the vicinity of sharp gradients and discontinuities.

The second-order-accurate CVS scheme [28, 29] is based on the total variation-
diminishing (TVD) concept [30] and is suitable for the present problem. In the CVS scheme,
the convective flux is estimated using the second-order TVD scheme [30] to improve the
formal order of accuracy and the local characteristic speeds are assigned according to the
value of the local convective speed. The second-order net flux term for the linearized implicit
version of the CVS is presented as follows:

f (2)

i+ 1
2
− f (2)

i− 1
2

= 1

2
ρi+ 1

2

{[
bi+ 1

2
− Qi+ 1

2

][
1 + 1

2
ψ

(
r−

i+ 1
2

)]}n

(φi+1 − φi )
n+1

− 1

2
ρi− 1

2

{[−bi− 1
2
− Qi− 1

2

][
1 + 1

2
ψ

(
r+

i− 1
2

)]}n

(φi − φi−1)
n+1

+ 1

4
ρi+ 3

2

{
ψ

(
r−

i+ 3
2

)[−bi+ 3
2
+ Qi+ 3

2

]
(φi+2 − φi+1)

}n

− 1

4
ρi− 3

2

{
ψ

(
r+

i− 3
2

)[
bi− 3

2
+ Qi− 3

2

]
(φi−1 − φi−2)

}n
. (14)

The superscript (2) stands for second-order accuracy, (n + 1) represents the value at the
current iteration, and subscript (i) indicates the cell center location. The function ψ(r)
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and Q are the Minmod flux limiter and the dissipation function, respectively, and they are
defined as follows:

ψ(r) = max[0, min(1, r)], r+
i+ 1

2
=

fi+2 − fi+ 3
2

fi+1 − fi+ 1
2

, r−
i+ 1

2
=

fi−1 − fi− 1
2

fi − fi+ 1
2

(15)

Qi+ 1
2

≡ Q
(
bi+ 1

2

)



1
2

(
b2

δ
+ δ

)
, if |b| < δ

|b|, if |b| ≥ δ.
(16)

The parameter δ is used to regulate the numerical viscosity; in this study it is assigned as
zero, which results in the clipping of the fluxes. Local characteristic speed b is assigned
according to the value of the cell face velocity.

3.1. Pressure-Based Algorithm

The pressure-based algorithm adopted in this study follows the spirit of the well-
established SIMPLE algorithm [21], with substantial extension to treat issues associated
with curvilinear coordinates and multiblock interface. Basically, the momentum equations
are discretized as

A�u
P �u =

∑
A�u

nb �unb − VP(∇d P)P + bP , (17)

where A�u
P and A�u

nb are the coefficients of the cell center and neighboring nodes, respectively,
due to contributions from convection and diffusion terms. VP and bp represent the volume
of the cell and the source term, respectively. Note that the ∇d operator is in the discrete form.
The solution procedure is based on the predictor–corrector approach, where the discretized
momentum equations is cast as

A�u
P �u∗ =

∑
A�u

nb �u∗
nb − VP(∇d P∗)P + bP , (18)

indicating that the velocity field at any given location is updated based on the existing values
of the neighboring velocity and pressure. Based on Eqs. (17) and (18), velocity corrections
can be computed as follows:

�u′ = �u − �u∗ = −DP(∇d P ′)P DP =




VP/Au
P 0 0

0 VP/Av
P 0

0 0 VP/Aw
P


 . (19)

In order to derive corrections for the pressure field, the continuity equation, Eq. (1), is
converted to a pressure–correction equation by substituting the corrected velocities:

∇d · (ρD∇d P ′) = ∇d · (ρ �u∗). (20)

Clearly, the above pressure correction equation has a diffusive nature.
In the pressure-based algorithm, the pressure–correction equation has been revised to

achieve successful solutions for highly compressible flows [23, 31, 32]. We will describe this
formulation in the context of noncavitating flows with compressibility effects to motivate
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the present cavitating flow method. For highly compressible flows, density needs to be
corrected to account for the strong pressure–density dependency. For such a formulation
the flux terms in the continuity equation will be

ρ �u = (ρ∗ + ρ ′)(�u∗ + �u′
) = ρ∗ �u∗ + ρ∗ �u′ + ρ ′ �u∗ + ρ ′ �u′, (21)

where ρ �u term is the mass flux entering the control volume. Starred variables represent
the predicted value and primed variables represent the correction terms. The inclusion of
the above equation, along with a relation that couples the density to pressure, leads to the
following pressure–correction equation:

ρ ′ = Cρ P ′ (22)

−∇d · (ρ∗D∇d P ′) + ∇d · (Cρ �u∗ P ′) = −∇d · (ρ∗ �u∗) + ∇d · (Cρ P ′D∇d P ′). (23)

By comparing Eqs. (20) and (23), one can see that the characteristics of the pressure–
correction equation is altered from a pure diffusive nature to a mixed convective–diffusive
nature in regions where density is a function of pressure. As discussed in [23], the relative
importance of the first and second terms in Eq. (23) depends on the local Mach number; for
low Mach number flows, only the first term prevails, while for high Mach number flows, the
second term becomes important. The Mach number dependency can be shown through the
equation of state. The fourth term is a nonlinear second-order correction term and it can either
be neglected or included in the source term to stabilize the computation in early iterations.

In the cavitation model, a convection equation with pressure-dependent source terms,
Eq. (3), is solved to determine the density field. Because of this coupling between pressure
and density, the pressure–correction equation needs to be reformulated even though the
Mach number effect is not explicitly addressed in the model. Due to Eq. (3) with source terms
defined in Eq. (5), once the cavitation model is implemented into a pressure-based algorithm,
the pressure–correction equation exhibits a convective–diffusive nature in cavitating regions
and purely diffusive nature in the liquid phase. In the present algorithm, the following
relation between density correction and pressure correction is introduced to establish the
pressure–density coupling,

ρ ′ = C(1 − αl)P ′, (24)

where C is an arbitrary constant. It should be emphasized that the choice of this constant
does not affect the final converged solution because of the nature of the pressure–correction
equation. Different values of C simply lead to different paths for reaching the converged
solution. However, the convective–diffusive nature of the pressure–correction equation is
directly affected by the choice. It can easily be shown that the ratio between the convective
strength, the second term in Eq. (23), and diffusive strength, the first term in Eq. (23), is
directly related to C(1 − αl). In the cavity region, the liquid mass fraction decreases, and the
pressure–correction equation is of a clear convective–diffusive nature. On the other hand,
in the liquid region, the pressure–correction equation returns to a purely diffusive type.
Furthermore, it is found that a very large value for C can destabilize the computation in the
early stages of the iteration process. For this reason, we suggest C = O(1) be used. In our
computations, C = 4 is adopted. It should be noted that the above discussion is based on
normalized variables, with the density of the liquid assigned as 1.

The present pressure–velocity–density coupling scheme is along a path responsive to
the cavitation dynamics. It is found that the proposed scheme mimics the ∂ρ/∂ P variation
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adequately especially near α = 0 where the variation is very steep. From the convergence
rate point of view, the scheme performs satisfactorily compared to the noncavitating flow
computations.

Due to the convective–diffusive nature of the pressure–correction equation for cavitating
flows, the coefficient matrix is noticeably asymmetric. Hence, iterative matrix solvers,
designed specially for the fast efficient solution of the symmetric problems, need new
insight into the precondition treatment. In the present study, we employ the conventional
relaxation technique.

Next, we present the practical implementation of the pressure–velocity–density coupling
for cavitating flows. For simplicity, we consider the following one-dimensional case to
illustrate the nature of the revised pressure–correction equation. Note that a first-order
upwind scheme is used for the second term in Eq. (23):

ai P ′
i = (

ainc
i+1 + C(1 − αl)i+1 max

[−ui+ 1
2
, 0

])
P ′

i+1

+ (
ainc

i−1 + C(1 − αl)i−1 max
[
ui− 1

2
, 0

])
P ′

i−1 + bi (25)

ai = (
ainc

i+1 + C(1 − αl)i max
[
ui+ 1

2
, 0

]) + (
ainc

i−1 + C(1 − αl)i max
[−ui− 1

2
, 0

])
. (26)

In this equation, ainc
i+1 and ainc

i−1 are the coefficients stemming from an incompressible for-
mulation, bi is the source term, and αl is the liquid volume fraction. Subscripts (i + 1) and
(i − 1) stand for the neighboring grid nodes in the east and west directions, respectively.
The above form is a combined incompressible–compressible formulation that preserves
the incompressible nature in the liquid phase. In the cavitating region, it accounts for the
pressure–density dependency in a nonlinear fashion, in accordance with the local value of
αl . This modification is key to a stable computation in which the uniform vapor pressure is
recovered in the final converged solution.

Another aspect is that, similar to compressible flow computations, the density at the
cell face is upwinded both in the discretized momentum and pressure–correction equations
[23, 26, 31]. The criterion for upwinding is based on the value of liquid volume fraction; that
is, whereverαl is less than 1.0, the cell-faced density value is estimated based on an upwinded
formula. In regions of sharp density gradients, a single point upwinded extrapolation for
density, instead of a two-point interpolation, can significantly improve the convergence level
as demonstrated in Fig. 1. The residuals resulting from momentum, mass continuity, and
volume fraction transport equations can approach much lower levels than the pressure-based
algorithm without an upwinded interpolation for density. It is noted that the residuals are
defined as the absolute values of the imbalance of the individual equations summed over
the entire number of computational cells, normalized by the total flux of the given variable,
at the inlet of the computational domain.

It should also be emphasized that Eq. (24) is not limited to the cavitation model employed
in this study; it can easily be adopted for other cavitation models. For example, if an equation
of state is utilized to generate the variable density field, then vapor or mass fraction can be
derived from density values and used in Eq. (23) to establish the pressure–density coupling.

3.2. Boundary Conditions

Velocity components, volume fractions, and turbulence quantities are specified at the
inlet boundary. At the outlet, a zero gradient condition is imposed for pressure correction,
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FIG. 1. Improvement in convergence level due to density upwinding. Hemispherical object at σ = 0.40.

velocity, and volume fraction; in addition, the velocity components are corrected to satisfy
the global mass conservation condition with the pressure being fixed at a single upstream
node. The pressure value at this node is used to compute the value of vapor pressure for
the corresponding cavitation number. At walls, pressure, volume fractions, and turbulence
quantities are extrapolated along with no-slip conditions for velocity.

4. RESULTS AND DISCUSSIONS

The formulation presented in the previous section is applied to two different axisymmet-
ric geometries to investigate numerical and physical issues involved in cavitation modeling.
Both geometries considered have a cylindrical after-body and they will be referred to accord-
ing to the shape of their headforms, specifically, hemispherical or blunt. The results include
steady-state computations of noncavitating and cavitating flows at a Reynolds number of
1.36 × 105. The cavitation parameter is typically defined as follows:

σ = 2(P∞ − Pv)

ρU 2∞
. (27)

Results are compared with experimental results of Rouse and McNown [34] in which
pressure coefficients are reported. Since the experimental information does not include
time dependency, the steady-state model is adopted in the present computations. From the
physical point of view, the steady-state assumption is sensible for sheet cavitation, which
has a quasi-steady behavior, with most of the unsteadiness localized in the rear closure
region [2, 35, 36]. However, for the blunt object, cavitation may not develop in the form
of sheet cavitation. Nevertheless, we have employed the steady-state formulations for both
geometries.
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We have organized the results into two parts based on the geometry considered. First, we
will present the simulations of hemispherical object and discuss issues of grid refinement,
convection schemes, and sensitivity to cavitation model parameters. Next, computations
of the blunt object will be presented in which we investigate the turbulence modeling
issue in the context of the k-ε model. Information related to velocity, pressure, and cavity
characteristics will be discussed.

4.1. Simulations of Flow Over a Hemispherical Object

A grid refinement study has been performed to assess the accuracy and sensitivity of
the predictions for flows around a hemispherical object. Two grid systems (Grid-A with
119 × 65 nodes; Grid-B with 231 × 161 nodes) are generated. Compared to Grid-A, Grid-B
has essentially twice the spatial resolution in each direction surrounding the cavity. In both
computations, the same modeling parameters given in Fig. 2 are used. Figure 2 shows the
pressure coefficient, flow pattern, and density distribution along the body obtained at a
cavitation number of 0.40. As can be seen from the plot, the impact of grid resolution on
the pressure distribution is not significant. Also, no sharpening of the interface is observed
due to grid refinement. However, the density profiles indicate a shorter cavity length for
Grid-B. The reason for this shortening is primarily due to the reentrant jet in the rear closure
region. By comparing the streamlines and cavity profiles given also in Fig. 2, one can see
that the reentrant jet in the closure region is clearer with Grid-B and has a higher strength
than with Grid-A. Furthermore, a lower density is observed inside the cavity with Grid-B. It
should be emphasized that the pressure profile is not sensitive to the range of grid resolution
investigated. Although the flow structure is better resolved with Grid-B, we utilize Grid-A
for the rest of the study because of the negligible impact on pressure distribution. This
decision is made based on the fact that only pressure distributions are available in the
experimental study by Rouse and McNown [34].

Numerical diffusion is a major concern in complex flow computations. In this study,
the effect of first- and second-order-accurate convection schemes on solution accuracy
is evaluated. In Fig. 3, the pressure coefficient and density profiles, corresponding to a
cavitation number of 0.40, are shown. Interestingly, both convection schemes produce

FIG. 2. Grid refinement study for hemispherical object with σ = 0.40 (Cdest = 9 × 105, Cprod = 3 × 104,
ρl/ρv = 1000). Experimental data are from [34].
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FIG. 3. Effect of convection schemes on pressure coefficient and density distribution for the hemispherical
object at σ = 0.40 (Cdest = 9 × 105, Cprod = 3 × 104, ρl/ρv = 1000). Grid-A (119 × 65) is used. Experimental
data are from [34].

almost identical results for density and pressure. The density profile is very sharp at the
closure region even in the case of first-order upwind scheme (FOU). This phenomenon is
mainly an outcome of the cavitation model. Basically the variable density field is generated
through source terms for destruction and production of liquid phase. Any smearing is
automatically eliminated through activation of the production source term ṁ+. As the
iteration proceeds, a balance between production and destruction terms is achieved resulting
in a cavity profile with uniform pressure and density fields inside. No significant change is
observed in flow structure and cavity profiles. Also, the second-order-accurate CVS scheme
does not produce any oscillations around the sharp discontinuity at the closure region. Even
though the first-order solution appears satisfactory in this case, to ensure that satisfactory
results are obtained in other cases, the second-order-accurate CVS scheme is adopted for
convection terms throughout the study.

In Fig. 4, the sensitivity of the solutions to model parameters is studied. It can be seen
that even increasing these parameters by an order of magnitude has little effect on the
pressure coefficient predictions. However, the computed density ratio is noticeably different
between these model parameters. Clearly, the computed density ratios can be controlled
through adjustment of the model parameters to yield very different solutions while pressure
predictions remain unaffected.

Figure 5 demonstrates the predictive capability of the model at cavitation numbers of
0.40 and 0.30 through comparison with experimental data [34]. Identical model parameters
are adopted for both cavitation numbers. The pressure distribution corresponding to the
noncavitating condition is also plotted for comparison. The present numerical algorithm
performs well for both cavitating and noncavitating conditions. The corresponding cavity
profiles, streamlines, and computed density ratios are also presented in Fig. 5. The computed
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FIG. 4. Sensitivity of modeling parameters for the hemispherical object at σ = 0.40 (ρl/ρv = 1000). Grid-A
(119 × 65) is used.

cavity profiles are in the form of pinched pockets with reentrant jets in the closure region.
With a lower cavitation number (σ = 0.30), the cavity, as expected, becomes larger than that
with a cavitation number (σ = 0.40). The reentrant jet is also stronger, suggesting that at
lower cavitation numbers the reentrant jet can easily perturb the cavity, possibly leading to
shedding of bubbles. The computed density ratio is higher for σ = 0.30 because, similar to
what is observed in grid refinement, the source terms are effective on more grid points. The
cavity detachment point remains fixed in both of the simulations, which is also in agreement
with experimental data.

Gopalan and Katz [36] have recently showed that vorticity production occurs at the closure
region of sheet cavities due to baroclinic torque. As shown in Fig. 6, our computations do
indicate production of vorticity at the closure region for both cavitation numbers considered,
which is consistent with the findings of Gopalan and Katz [36] and, hence, verifies the
success of our numerical method. Furthermore, there is no additional production of vorticity
at the front part of the cavity indicating that the density and the pressure fields are properly

FIG. 5. Comparison of pressure coefficient distributions for hemispherical object under noncavitating and
cavitating conditions (Cdest = 9 × 105, Cprod = 3 × 104, ρl/ρv = 1000). Experimental data are from [34].
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FIG. 6. Vorticity generation at the closure region due to baroclinic torque.

computed so that their gradients align parallel to each other without causing any baroclinic
vorticity generation.

In Fig. 7, the dynamics of the phase change process is shown. The evaporation process,
driven by the pressure difference, is localized at the leading part of the cavity generating
the vapor phase. On the other hand, condensation is concentrated along the interface. As
a result, these two counteracting processes generate a vapor pocket, which has an almost
uniform density (as shown in Fig. 6) and pressure field inside.

4.2. Simulations of Flow Over a Blunt Object

Computations have also been conducted to predict cavitation over blunt cylindrical ob-
jects. For this particular object, Rouse and McNown [34] have provided the pressure coef-
ficient distribution along the body, and Katz [37] has reported flow reattachment locations.
In view of the potential deficiencies associated with the original k-ε turbulence model
[23, 25] for complex flows, a nonequilibrium version of the k-ε model [26], is studied in
addition to the original k-ε model. To investigate the turbulence modeling issue, we first
consider the noncavitating condition and then extend the study for cavitating conditions.
Figure 8 shows the pressure coefficient profile for the noncavitating condition. The orig-
inal k-ε model fails to match the experimental data in the vicinity of the sharp corner
where large strains and streamline curvatures are expected to occur. On the other hand, the
nonequilibrium k-ε model performs better to capture the pressure coefficient distribution.

FIG. 7. Dynamics of the phase change.
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FIG. 8. Impact of turbulence modeling on predictions of pressure coefficient distribution for noncavitating
conditions. Experimental data are from [34].

Both models produce comparable solutions far downstream. It should be pointed out that
far downstream, pressure distributions are slightly different compared to the experimental
data. This is apparently because of the difference between the computational domain and the
experimental test section. Figure 9 shows the normalized u-velocity distribution along the

FIG. 9. Effect of turbulence model on separation zones for noncavitating conditions. Experimental data are
from [37].
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FIG. 10. Impact of turbulence modeling on predictions of pressure coefficient and density distribution (σ =
0.50, Cdest = 9 × 103, Cprod = 6 × 103, ρl/ρv = 1000). Experimental data are from [34].

body that is extracted from the first computational nodes away from the solid boundary.
The point where velocity changes sign is the reattachment point. One can see that there are
considerable differences in predictions of reattachment locations and associated velocity
profiles between two turbulence models. It is observed that the reattachment point location,
predicted with the nonequilibrium k-ε model, is consistent with the experimental data [37]
even though the Reynolds number range is not the same. It should be noted that Katz [37]
has not observed a strong correlation between the reattachment location and the Reynolds
number for this range. Overall, the nonequilibrium k-ε model performs better, compared to
the original k-ε model, in capturing the pressure coefficient distribution and the extent of
separation zones. Based on this observation, the nonequilibrium k-ε model is included in
the study of cavitating flows over blunt objects.

Figure 10 shows the pressure coefficients and density profiles along the blunt object at
a cavitation number of 0.50. Cavity profiles and streamlines are also included in Fig. 8.
Computed pressure profiles qualitatively follow the experimentally observed trend. Un-
like noncavitating flow computations, both turbulence models considered produce simi-
lar results. Figure 11 illustrates the normalized u-velocity profile along the surface. The
difference in predicted reattachment location is also less significant between the two tur-
bulence models. Furthermore, both solutions exhibit rather modest density ratios across
the cavity interface, suggesting that inside the cavity, the flow exhibits liquid–vapor bub-
bly structures. In our view, the discrepancy between computational and experimental re-
sults may be caused by our steady-state computations. Stinebring et al. [38] employ high-
speed visualization and report that cavities formed around blunt objects are highly un-
steady, and bubbling phenomenon is typically observed. The unsteady computation is ex-
pected to offer a better insight for this particular object and will be our focus for future
work.

In Fig. 12, the turbulent kinetic energy k and turbulent dissipation rate ε, resulting from
the original and nonequilibrium k-ε turbulence models, are compared. In both cases, the
turbulent variables are of higher levels following the shear layer surrounding the cavity;
however, the detailed distributions are different. The nonequilibrium model yields more
substantial presence in both k and ε. Together, they are responsible for a somewhat longer
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FIG. 11. Comparison of u-velocity along the surface obtained from different turbulence models (σ = 0.50,
Cdest = 9 × 103, Cprod = 6 × 103, ρl/ρv = 1000).

recirculating zone, as shown in Fig. 11. Although the predictions of pressure are less sensitive
to turbulence modeling, other quantities, such as wall shear stress and velocity profiles, can
be more affected by it. Due to lack of experimental guidance, we will not present detailed
results from the computational study.

FIG. 12. Comparison of turbulence quantities obtained from different turbulence models (σ = 0.50, Cdest =
9 × 103, Cprod = 6 × 103, ρl/ρv = 1000).



TURBULENT CAVITATING FLOW COMPUTATIONS 381

5. SUMMARY AND CONCLUSIONS

A pressure-based method for cavitating flow computations is presented and assessed.
Single-fluid Navier–Stokes equations, cast in their conservative form, along with a vol-
ume fraction transport equation, are employed. The flow is computed in both phases with
the vapor pressure recovered inside the cavity via a mass transfer model. A pressure–
velocity–density coupling scheme is developed to treat cavitating conditions. While no
temperature, and hence no Mach number, effect is considered in the cavitation model, the
resulting pressure–correction equation shares common features with that of high-speed
flows, exhibiting a convective–diffusive type, instead of only a diffusive type. Specifically,
the convective effect in the pressure–correction equation is important as the vapor mass
fraction increases in the cavity region; elsewhere, the pressure–correction equation returns
to a purely diffusive type.

Furthermore, similar to high-speed cases, upwinded density interpolation in mass flux
computations also aids convergence of the cavitating flow computations. Combined with
the multiblock and curvilinear grid systems, the present flow solver can handle large density
ratios and complex geometries. For the turbulent flows with sheet cavitation, the density
profiles indicate a sharp discontinuity at the closure region with a reentrant jet located
downstream of it.

Several issues related to grid resolution, convection schemes, and turbulence modeling
have been investigated. The reentrant jet in the closure region can be better resolved with
grid refinement. The jet becomes stronger as the cavitation number is lowered. Compared
to the original k-ε model, the nonequilibrium version of the k-ε model performs better
for the same flow conditions. For cavitating flows, although the predictions of pressure
are less affected by turbulence modeling, other quantities, such as wall shear stress and
velocity profiles, can be more sensitive to it. More investigation of turbulence modeling for
bubbly mixtures is needed. While satisfactory agreement between numerical solutions and
physical measurements in wall pressure distribution can be maintained with variations in
grid resolution and parameters in the cavitation model, other aspects, such as the density
distribution, are found to exhibit much higher sensitivity to them. Based on the numerical
solutions, physical insight into the vorticity distribution and condensation and evaporation
dynamics is gained.

For the cavitation numbers considered, steady-state assumption works well for the hemi-
spherical object, and facilitates reasonable predictions for the blunt object. Unsteady com-
putations are expected to offer improved insight and will be our next focus for future study.
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